Astrophysical Source Separation Using Particle Filters
نویسندگان
چکیده
In this work, we will confront the problem of source separation in the field of astrophysics, where the contributions of various Galactic and extra-Galactic components need to be separated from a set of observed noisy mixtures. Most of the previous work on the problem perform blind source separation, assume noiseless models, and in the few cases when noise is taken into account assume Gaussianity and spaceinvariance. However, in the real scenario both the sources and the noise are space-varying. In this work, we present a novel technique, namely particle filtering, for the non-blind (Bayesian) solution of the source separation problem, in case of non-stationary sources and noise, by exploiting available a-priori information.
منابع مشابه
Source separation using particle filters
Our goal is to study the statistical methods for source separation based on temporal and frequency specific features by using particle filtering. Particle filtering is an advanced state-space Bayesian estimation technique that supports non-Gaussian and nonlinear models along with time-varying noise, allowing for a more accurate model of the underlying system dynamics. We present a system that c...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملSource Separation on Astrophysical Data Sets from the WMAP Satellite
This paper presents and discusses the application of blind source separation to astrophysical data obtained with the WMAP satellite.
متن کاملAdaptive Langevin Sampler for Separation of t-Distribution Modelled Astrophysical Maps
We propose to model the image differentials of astrophysical source maps by Student's t-distribution and to use them in the Bayesian source separation method as priors. We introduce an efficient Markov Chain Monte Carlo (MCMC) sampling scheme to unmix the astrophysical sources and describe the derivation details. In this scheme, we use the Langevin stochastic equation for transitions, which ena...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004